
Towards energy-efficient service scheduling in federated edge clouds

Yeonwoo Jeong1 • Esrat Maria1 • Sungyong Park1

Received: 28 November 2020 / Revised: 4 June 2021 / Accepted: 9 June 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This paper proposes an energy-efficient service scheduling mechanism in federated edge cloud (FEC) called ESFEC, which

consists of a placement algorithm and three types of reconfiguration algorithms. Unlike traditional approaches, ESFEC

places delay-sensitive services on the edge servers in nearby edge domains instead of clouds. In addition, ESFEC schedules

services with actual traffic requirements rather than maximum traffic requirements to ensure QoS. This increases the

number of services co-located in a single server and thereby reduces the total energy consumed by the services. ESFEC

reduces the service migration overhead using a reinforcement learning (RL)-based reconfiguration algorithm, ESFEC-RL,

that can dynamically adapt to a changing environment. Additionally, ESFEC includes two different heuristic algorithms,

ESFEC-EF (energy first) and ESFEC-MF (migration first), which are more suitable for real-scale scenarios. The simulation

results show that ESFEC improves energy efficiency by up to 28% and lowers the service violation rate by up to 66%

compared to a traditional approach used in the edge cloud environment.

Keywords Energy-efficient � Federated edge cloud � Service scheduling � Reinforcement learning

1 Introduction

A federated edge cloud (FEC) [2] is an edge cloud envi-

ronment [3] where multiple edge servers in a single

administrative domain collaborate together to provide real-

time services. This environment reduces the possibility of

violating the quality of service (QoS) requirements of tar-

get services by locating delay-sensitive services at nearby

edge servers instead of deploying them on the clouds.

However, as the number of edge servers increases in FEC,

the amount of energy consumed by servers and network

switches also increases [4]. Considering that the energy

consumption and QoS depends on which server a service is

deployed to, it is necessary to devise an efficient service

scheduling strategy that satisfies service QoS while

reducing energy consumption in FEC.

There have been a large number of research activities

for scheduling services to reduce energy consumption in

multi-cloud or edge clouds. However, most of them have

focused on scheduling services using maximum traffic

requirements regardless of their actual traffic usage.

Although these approaches can ensure service QoS, they

prevent services from being co-located even when the

traffic volume is quite low. This leads to low resource

utilization and unnecessary energy consumption. It is

reported that the average CPU utilization of a server cluster

is only about 50–60% [5]. Furthermore, service migration

scenarios are not taken into account because services are

scheduled based on their maximum traffic requirements.

This assumption is not suitable for our target environment

because the computing capacity of each edge server in the

FEC is quite limited.

This paper proposes an energy-efficient service

scheduling mechanism in the FEC called ESFEC that

minimizes energy consumption on the service path, while

ensuring QoS at the same time. In order to prevent physical

resources from being wasted, this paper considers placing

A preliminary version of this article [1] was presented at the

2020 IEEE 1st International Workshops on Autonomic

Computing and Self-Organizing Systems (ACSOS),

Washington DC, USA, August, 2020.

& Sungyong Park

parksy@sogang.ac.kr

Yeonwoo Jeong

akssus12@sogang.ac.kr

Esrat Maria

esratmaria@sogang.ac.kr

1 Department of Computer Science and Engineering, Sogang

University, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of

Korea

123

Cluster Computing
https://doi.org/10.1007/s10586-021-03338-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0309-1820
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03338-9&domain=pdf
https://doi.org/10.1007/s10586-021-03338-9

services with their actual traffic requirements along the

service path and gradually reconfigures the path as the

amount of traffic increases. This approach can save energy

consumption when traffic is low compared to service

scheduling with maximum traffic requirements. However,

when traffic is high, physical resources are quickly over-

loaded and the number of service migration can increase.

This also affects energy consumption [6]. Thus, we devised

a reconfiguration mechanism to minimize migration over-

head, which also has an effect on overall energy

consumption.

ESFEC initially places delay-sensitive services in edge

servers based on their minimum CPU utilization require-

ments when service requests arrive. By periodically mon-

itoring traffic fluctuation and volume in each edge server,

ESFEC reconfigures the service path when the CPU uti-

lization of any edge server exceeds the predefined thresh-

old value. All decisions are made by simultaneously

considering the minimization of total energy consumption,

the reduction of QoS violation, and the minimization of

migration overhead.

ESFEC provides a reinforcement learning (RL)-based

reconfiguration algorithm called ESFEC-RL that enables

the idea of an agent to learn to survive in an unknown

environment with no prior knowledge. Whenever a host is

over-utilized, ESFEC-RL immediately reacts to the situa-

tion by migrating a potential virtual machine (VM) to an

optimal host. The optimal host is chosen by the learning

agent which not only reduces energy consumption but also

efficiently deals with migration overhead. In a federated

environment, the latency along the path and the number of

hops may vary. The learning agent chooses an optimal host

that requires minimal migration energy along the path and

immediately chooses the destination host because the

longer a host stays over-utilized the greater the energy

consumption.

ESFEC also provides two heuristic-based reconfigura-

tion algorithms called ESFEC-EF (energy first) and

ESFEC-MF (migration first). ESFEC-EF focuses more on

an energy-aware approach by placing services in a nearby

edge server to minimize excess energy consumption along

the path, whereas ESFEC-MF is focused on the mini-

mization of the number of migrations. Although the

heuristic algorithms are more suitable for real-scale sce-

narios, a learning-based algorithm is proven to be much

more efficient in the long term since it always has an

opportunity to learn in an environment that can change at

any time.

We conducted a simulation using a cloud simulator

called CloudSimSDN. The simulation results show that

ESFEC outperforms the traditional approach used in the

edge cloud environment in terms of energy consumption

and service violation rate by up to 28% and 66%,

respectively.

In summary, this paper makes the following specific

contributions:

– The mechanism proposed in this paper is the first

attempt to address energy efficiency issues in the FEC.

– To increase the number of co-located services, ESFEC

places services based on their actual traffic require-

ments instead of their maximum requirements. This is

in contrast to traditional approaches used in multi-cloud

and edge clouds

– ESFEC proposes an RL-based reconfiguration algo-

rithm to reduce the service migration overhead. In

addition, it also provides two heuristic algorithms that

are more suitable for large-scale scenarios.

2 Related work

Although few research efforts have been made to minimize

energy consumption in FEC, various research activities for

scheduling services in terms of energy efficiency and QoS

guarantee are conducted in multi-cloud and edge cloud

environments. This section provides a brief summary of

each activity and discusses the limitations of previous

works.

Kim et al. [7] proposed a dynamic virtual network

function (VNF) placement and reconfiguration algorithm to

minimize energy consumption while ensuring service QoS.

Abdessamia and Tian [8] proposed an energy-efficient

virtual machine placement based on the binary gravitation

search algorithm to assure cloud consolidation and blueuce

power wastage. Tarahomi et al. [9] presented an efficient

power-aware VM allocation in cloud data center. They

utilized a micro-genetic algorithm to dynamically consol-

idate cloud servers using live migration. Sun et al. [10]

proposed an energy-efficient and traffic-aware service

function chaining (SFC) orchestration in multi-domain

networks. They proposed an online service scheduling

mechanism to minimize energy consumption in servers and

network links. Shang et al. [11] proposed a network con-

gestion-aware service placement and load balancing

mechanism. This paper suggests that the algorithm can

minimize operation cost and network congestion time

generated by nodes and links.

Ascigil et al. [12] proposed resource allocation algo-

rithms to place service requests from users and reconfig-

ure service resources in order to maximize the QoS

experienced by users. This paper focuses on a uncoordi-

nated service placement strategy whenever service requests

arrive. Son and Buyya [13] suggested a latency-aware VNF

provisioning scheme in distributed edge clouds. This paper

Cluster Computing

123

places latency-sensitive services between edge and cloud to

guarantee QoS. Keshavarznejad et al. [14] presented a task

offloading mechanism in fog environments that blueuces

the total power consumption as well as the delay in exe-

cuting tasks. The authors solved the multi-objective opti-

mization problem using the non-dominated sorting genetic

algorithm and the Bees algorithm.

At present, reinforcement learning has proven to be a

promising approach for the selection of an optimal policy.

It has outperformed the traditional threshold-based

approach which is not always very convenient. Duggan

et al. [15] proposed an agent that learns the optimal time to

schedule VM migration. An agent that can choose an

optimal VM for migration from an overloaded host has

been designed by Duggan et al. [16]. Peng et al. [17]

proposed an online resource scheduling framework in

cloud systems based on the Deep Q-Network (DQN)

algorithm. The authors solved two optimization problems

of energy consumption and service quality by adjusting the

proportion of different reward optimization objectives.

Alfakih et al. [18] proposed a resource management

framework in mobile edge computing (MEC) environments

using an online learning algorithm called state–action–re-

ward–state–action (SARSA). They made an optimal

offloading decision for minimizing energy consumption

and computing delay based on the SARSA.

3 System models and problem definition

In this section, we discuss the system model for the pro-

posed approach and define the problem to be solved in this

paper.

3.1 System model

Figure 1 shows an example of the FEC environment that

we are targeting in this paper. The FEC environment

consists of multiple edge domains where each domain

includes multiple edge servers with limited computing

capacity. The edge servers within an edge domain are

connected by an edge switch. Each edge switch is in turn

connected to aggregate switches and core switches to route

traffic to the cloud servers. We assume that the cloud

servers are equipped with unlimited computing capacity.

Both cloud servers and edge servers in an FEC environ-

ment are virtualized and multiple VMs can be created over

these servers.

A service in an FEC environment consists of a series of

service functions where each service function contains the

descriptions of its minimum and maximum traffic

requirements. When a service is requested, its service

functions are placed in appropriate VMs to create a service

path. We call this service placement. This paper assumes

that only one service function can reside in one VM. The

VM running a service function can be migrated to other

edge servers or cloud servers to minimize the total energy

consumption while ensuring service QoS. We call this

service reconfiguration.

3.2 Problem definition

We assume that physical resources including edge servers

and network links can be represented as a graph

G ¼ ðV;EÞ. For example, V represents either edge servers

or cloud servers where services can be placed, while

E represents virtual network links between the servers.

If a service S is composed of K service functions SF, a

service path SP can be expressed as SP ¼ SF1 ! SF2 !
� � � ! SFK . Assume that the number of edge servers used

for running all SP is N and the number of network links

used to route the traffic from all SP is M. Then, the energy

consumption of physical resources Ephysical
SP can be calcu-

lated by adding the sum of energy consumption from N

edge servers and M links as shown in Eq. 1.

Ephysical
SP ¼

XN

i¼1

Eserver
i þ

XM

j¼1

Elink
j : ð1Þ

After placing a service on the service path, the service can

be migrated to nearby edge servers according to service

traffic fluctuations. If the total number of migrations

occurred in all SP is P, the total energy consumed for

service migration Emigration
SP is sum of energy consumed for

each migration as shown in Eq. 2.

Emigration
SP ¼

XP

i¼1

Emigration
SPi

: ð2Þ

Then, the total energy consumption Etotal
SP is the sum of

Ephysical
SP and Emigration

SP as shown in Eq. 3.

Fig. 1 System model

Cluster Computing

123

Etotal
SP ¼ Ephysical

SP þ Emigration
SP : ð3Þ

The main objective of the proposed approach is to mini-

mize the total energy consumption Etotal
SP such that the

latency along the ith service path LSPi
does not exceed the

target service latency LtargetSPi
. If LSPi

exceeds LtargetSPi
in a

service placement and service reconfiguration, service QoS

violation is said to happen.

3.3 Energy model

The energy consumption in physical resources consists of

the energy consumption of a server and a link between the

servers. If a server or a switch is powered off, the energy

consumption of this resource is considered to be 0. This

paper assumes that the energy consumed by a server is the

sum of static energy Estatic
server (also called idle energy) and

dynamic energy. It is reported in [19] that the dynamic

energy of a server increases linearly with the CPU uti-

lization used.

Therefore, the energy consumption of the ith server

Eserver
i used in this paper is defined as Eq. 4.

Eserver
i ¼ Estatic

serveri
þ ðEmax

serveri
� Estatic

serveri
Þ � CPUused

i

CPUtotal
i

: ð4Þ

Similarly, a network switch consumes static energy Estatic
switch

regardless of the inflow of traffic, and dynamic energy

depending on the number of active switch ports used for

processing service traffic. In addition, the dynamic energy

of a network switch is proportional to the number of active

switch ports [20].

Assume that Eport
switch is defined as the energy consumption

of each port, and numport is the number of active switch

ports. Then, the energy consumed by the ith link Elink
i is

defined as Eq. 5.

Elink
i ¼ Estatic

switchi
þ Eport

switchi
� numport: ð5Þ

The overall energy is also affected by the migration energy.

This paper follows the migration energy model proposed

by Liu et al. [21]. We assume that the energy for VM

migration is affected by the duration of VM migration

LmigrationSPi
(defined in Eq. 10) and two regression parameters

a, b which can be obtained in [21]. Then, the energy

consumed by VM migration Emigration
SPi

can be defined as

Eq. 6, where VM j
size represents the size of a VM j in the ith

service path and BWavail
link represents the available bandwidth

of a link used for the migration.

Emigration
SPi

¼ a� VM j
size

BWavail
link

þ b: ð6Þ

3.4 Latency model

The service latency on the ith service path LSPi
is the sum

of the VM processing time in physical servers LserverSPi
, the

VM transmission time between physical servers LtransSPi
, and

the VM migration time LmigrationSPi
when service reconfigu-

ration is invoked as shown in Eq. 7.

LSPi
¼ LserverSPi

þ LtransSPi
þ LmigrationSPi

: ð7Þ

LserverSPi
is calculated by the processing time of each service

function multiplied by the actual CPU utilization of servers

along the service path as shown in Eq. 8. We assume that

the processing time of each service function Tideal
processing is

obtained when only one vCPU is mapped to one pCPU in a

server. Note that Tideal
processing can be increased as the number

of vCPUs handled by one pCPU is increased.

LserverSPi
¼
XN

j¼1

Tideal
processing �

CPUused
j

CPUtotal
j

 !
: ð8Þ

LtransSPi
is also defined by the sum of latency values from all

switches along the ith service path as shown in Eq. 9. The

latency in the jth switch is the average packet size gener-

ated in the ith service path PktsizeSPi
divided by the available

bandwidth of a link for transmitting a packet.

LtransSPi
¼
XM

j¼1

PktsizeSPi

BWavail
link

: ð9Þ

Besides, the VM migration time LmigrationSPi
is affected by the

size of a migrating VM because a target VM image is

transferred to a destination server through network

switches. Therefore, LmigrationSPi
is calculated by the sum of

the size of VM j in the ith service path divided by the

available bandwidth of a link for the migration BWavail
link as

shown in Eq. 10.

LmigrationSPi
¼
XM

i¼1

VM j
size

BWavail
link

: ð10Þ

4 ESFEC: energy-efficient service scheduling
in federated edge cloud

ESFEC consists of two sub-algorithms: service placement

and service reconfiguration. This section explains the

overall architecture of ESFEC and presents its algorithms

in detail.

Cluster Computing

123

4.1 System overview

Figure 2 depicts the overall system architecture and oper-

ational flow of ESFEC, which consists of three main

components: service placement manager, service monitor,

migration manager.

The service placement manager is initiated when a new

service request arrives at the service controller. That is,

when a user initiates a service request to the service con-

troller, the controller invokes the service placement man-

ager to decide where to place the service in an edge

domain. Since ESFEC considers actual resource utilization

when placing services, the service placement manager

initially allocates VMs running a series of service functions

to appropriate edge servers based on actual traffic

requirements.

The service monitor periodically checks the CPU uti-

lization of VMs in each edge server every 30 s and updates

the corresponding status in a database. If the aggregated

CPU utilization of VMs in an edge server exceeds the

predefined threshold value (we use 70% in this paper), the

service monitor triggers the migration manager to recon-

figure the service.

ESFEC provides three reconfiguration algorithms: one

learning-based algorithm (ESFEC-RL) and two heuristic

algorithms (ESFEC-EF and ESFEC-MF). Users can spec-

ify their preference at run time. In particular, when ESFEC-

RL is chosen, it refers to the Q-table generated by the

service agent. This allows us to find an optimal destination

host that minimizes the total energy consumption and

ensures service QoS during service reconfiguration.

4.2 Service placement

In the service placement algorithm, the main idea is to

maximize the level of VM consolidation for low energy

consumption. For this, the service placement algorithm

tries to find an edge server HOST after placing a service S

with multiple service functions SP ¼ SF1 ! SF2 ! � � �
! SFK , where the number of SF is K. Therefore, we

assume that each service request has both minimum and

maximum traffic requirements as well as its latency

requirement LSP when a new service request arrives at the

service controller. In order to minimize the used physical

resources, the service controller places services from the

low utilized edge servers so that the edge servers are not

overloaded. Algorithm 1 shows the service placement

algorithm in ESFEC.

4.3 RL-based service reconfiguration

ESFEC-RL is a Q-learning-based service reconfiguration

algorithm that introduces the concept of an agent. The

agent takes actions in the provided environment to maxi-

mize energy efficiency and guarantee service QoS. The

agent learns an optimal behavior with repeated trial and

error interactions in an environment that is completely

unknown to the agent. Initially, the agent starts by taking

random actions. Actions are chosen based on the policy p
that the agent is supposed to follow. The agent receives a

reward depending on the action selected. The agent can

only learn interactively with the help of this reward

function.

The behavioral value function is calculated using Eq. 11,

where s0 represents the next state after current state s under
action a and a0 represents all possible actions. c is the

discount factor that determines the importance of future

Fig. 2 Overview of ESFEC

Cluster Computing

123

returns relative to current returns. a is the learning rate. The
larger the value of a, the smaller the influence of historical

training results. We use 0.08 for c and 0.05 for a in this

paper. r is the reward value which will be explained later in

Sect. 4.3.3.

Qðs; aÞ ¼Qðs; aÞ þ a

� ðr þ cMinQðs0; a0Þ � Qðs; aÞÞ:
ð11Þ

The entire learning process of ESFEC-RL depends on the

following three major components: state, action, and re-

ward function. In what follows, we describe them in detail.

4.3.1 State space

The state space in ESFEC-RL is defined as a set

S ¼ si 2 S j 1� i� kf g, where si represents the ID i of an

overloaded host HOSTi and k is the total number of

physical hosts in the FEC. ESFEC-RL also maintains a

status table for all physical hosts that stores the CPU uti-

lization and the size of each VM running on each physical

host. Therefore, if HOSTi is overloaded, a VM with the

smallest size is chosen as a migrating VM and the resulting

CPU utilization in the ith place of the status table is

updated reflecting the migration.

4.3.2 Action space

Agents need to take a set of actions to modify their state in

the environment. We define a set of actions that the agent

can perform. There are two ways for selecting an action

from a set of possible actions in every state.

– Exploration or random action selection in the earliest

stages of our algorithm, an agent deals with an

unknown environment. Thus, the action taken by the

agent is random and optimal actions are not chosen yet.

– Exploitation an experienced agent takes an action based

on the learning policy (p). The learning policy defines

the reward which is discussed later in this paper.

In this paper, we use an �-greedy policy [22] to make sure

that an agent performs the best in our environment.

In ESFEC-RL, an action space A is defined as a set

A ¼ ai 2 S j 1� i� kf g, where ai is the ID i of a destina-

tion host HOSTi for migration and k is the total number of

physical hosts in the FEC. For example, an action a3 means

that HOST3 is selected as a destination host and we migrate

a VM to HOST3. The CPU utilization after the migration is

also updated in the status table. In this case, the maximum

number of actions to be chosen by an agent is equivalent to

the total number of physical hosts in the FEC.

With the increased number of physical hosts and the

number of iterations, the dimension of state–action space

grows exponentially. This can make a negative impact on

getting an optimal result and may also affect the conver-

gence speed. To cope with this, ESFEC-RL uses a candi-

date host list for deciding an action using only the hosts

that meet the QoS requirements. Since the size of candidate

host list is smaller than the total number of physical hosts,

this approach allows us to greatly reduce the dimension

complexity and simplify the energy calculation.

4.3.3 Reward function

A Q-table is maintained so that a learning agent can take a

look at a Q-value with each action taken by the agent and

work toward reaching the optimal action. For this, after

every action taken by the learning agent, a reward value is

calculated and the corresponding Q-value obtained by the

behavior value function in Eq. 11 is updated in the Q-table.

While updating the Q-values in the Q-table, ESFEC-RL

learns in a direction in which energy on the service path is

minimized in consideration of migration overhead.

Depending on which host the agent migrates a VM to,

the total energy consumption along the service path Etotal
SP

becomes higher or lower than that in current state. To

decide whether the agent’s action is beneficial, we define a

reward function rt at time t as shown in Eq. 12, where we

compare the total energy consumption along the service

path at time t with that at t þ 1. If the reward value is

negative, the action is considered to be good because the

total energy consumption is reduced. Since our goal is to

minimize the total energy consumption along the service

path, the smaller the reward value the better the action

taken by the agent.

rt ¼
Etotaltþ1

SP � Etotalt
SP

Etotalt
SP

: ð12Þ

4.3.4 Learning agent

To make an intelligent decision during service reconfigu-

ration when overloaded hosts are detected, a learning agent

has to be trained to minimize the total energy consumption

while considering a migration overhead. The learning agent

first perceives the current state to include overloaded host

servers in the provided environment. Then it filters out the

hosts that do not meet service QoS requirements and cre-

ates a candidate host list to determine a destination host for

the migration. This filtering process not only helps us

reduce the overall state–action space dimension but also

confirms that all hosts on the candidate host list meet the

QoS requirement.

Our learning agent chooses the optimal destination host

from the candidate host list by referring to the Q-table [23].

However, since there is not enough information in the

Cluster Computing

123

Q-table in the initial learning stage, the learning agent

randomly chooses the target destination host. The agent

calculates a reward value based on this migration action

and updates a new Q-value in the Q-table. After training

the learning agent for appropriate episodes, the agent is

able to make a better decision in terms of choosing an

optimal destination host with Q-table. An optimal decision

made by an agent is rewarded with a smaller value when

the total energy consumption is minimized. Algorithm 2

describes the pseudocode of training a learning agent in

detail.

An example scenario of training a learning agent with

Q-table is shown with Figs. 3 and 4. Assume that the CPU

utilization of VM3 in HOST1 increases from 10 to 20%,

which causes the aggregated CPU utilization of HOST1 to

exceed the maximum CPU utilization per server (70% in

this paper). Then, service reconfiguration is needed to

prevent service QoS violation.

As shown in Fig. 3, before starting the service migra-

tion, the learning agent makes a candidate host list by

calculating whether the service latency along the service

path exceeds the target latency after VM3 is migrated to the

destination hosts. Note that VM3 is a VM with the smallest

file size in HOST1, which reduces the migration energy. If

HOST2, HOST3, and HOST4 are chosen as candidate hosts,

the learning agent randomly chooses a destination host to

migrate VM3 since there is no prior knowledge. Suppose

that the learning agent chooses HOST3 as a destination host

to migrate VM3. After the migration, the learning agent

updates the host status table (i.e., 75% ! 55% of HOST1,

50% ! 70% of HOST3) and calculates a reward value

based on the action taken by migrating VM3 to HOST3.

Finally, the Q-value calculated by the reward value is

updated in the Q-table. After repeatedly performing the

learning episodes, the agent is supposed to select an opti-

mal destination host by referring to the Q-table.

4.4 Heuristic-based service reconfiguration

Although ESFEC-RL is likely to go toward the optimal

goal, the execution time to converge to the minimum

energy consumption can take longer. For this reason, the

learning-based approach may not be suitable for an envi-

ronment with a large number of states and actions.

Therefore, ESFEC provides two heuristic-based reconfig-

uration algorithms: ESFEC-EF and ESFEC-MF. While

ESFEC-EF focuses on minimizing the total energy con-

sumption in reconstructing the service path, ESFEC-MF is

targeting at minimizing the number of migrations.

Fig. 3 Scenario of service reconfiguration in ESFEC-RL

Fig. 4 Example of Q-table construction

Cluster Computing

123

The heuristic-based reconfiguration algorithm is

described in Algorithm 3. When a service reconfiguration

is required, a list of overloaded edge servers HOSTover is

sent to this algorithm by the service monitor. Then, this

algorithm locates a VM with the smallest size VMsize from

the HOST with the maximum server utilization in

HOSTover. This is because a HOST with the maximum

server utilization must be the most overloaded HOST and a

VM with the smallest size has the minimum migration

overhead, as shown in Eqs. 6 and 10. Finally, among the

edge servers excluding the servers in HOSTover, this algo-

rithm creates a list of candidate edge servers HOSTdest to

determine an appropriate destination edge server for ser-

vice migration.

If ESFEC-EF is selected as a reconfiguration policy, a

destination edge server is chosen so that the total energy

consumption along the service path is minimized. For this,

this algorithm searches for a HOST from the edge servers

in HOSTdest where the energy consumption after the service

migration is minimized, while the service latency LSP is

below the target latency LtargetSP . In contrast, ESFEC-MF

reconfigures a service path to minimize the possibility of

service migration. That is, ESFEC-MF selects a VM with

the smallest size VMsize and reallocates it to an edge server

with the largest leftover CPU utilization. This reduces the

possibility of service migration in next monitoring interval,

while satisfying the latency LSP requirement.

When ESFEC-EF and ESFEC-MF search for a desti-

nation edge server to migrate a VM, they initially try to

find an edge server that belongs to the same edge domain.

However, if there is no capacity available to migrate a VM

in current edge domain, they move to the rest of edge

domains that are connected by network switches. In this

case, the latency requirement should also be ensured.

5 Evaluation

To show the effectiveness of ESFEC, we implemented the

proposed algorithms over a cloud simulator called

CloudSimSDN [24]. This section compares their perfor-

mance with that of a traditional service scheduling algo-

rithm proposed for the edge computing environment.

5.1 Experimental environment

5.1.1 Topology

For the simulation, we assume a FEC environment with 8

edge domains, where there are 100 edge servers in each

domain (total 800 edge servers). Each edge server is

equipped with one 16-core CPU and 32 GB RAM. The

ratio of pCPU to vCPU is 1 (i.e., no sharing), which means

that the maximum number of VMs per each edge server is

16. The edge servers in each domain are interconnected by

a edge switch with a 1 Gbps link. Each edge switch is in

turn connected to the four aggregate switches with a 10

Gbps link. Finally, each aggregate switch is connected to

the two core switches with a 128 Gbps link to reach the two

cloud servers. We assume that the cloud servers have

unlimited computing capacity.

Cluster Computing

123

5.1.2 Energy parameters

For the energy parameters for a server and a switch such as

peak power consumption and idle power consumption, we

used the parameters suggested in CloudSimSDN.

5.1.3 Workloads and comparison target

We assume that two real-time application services with

different traffic characteristics, face recognition and online

text translator, run at the same time with a ratio of 60% to

40% for the simulation. While the face recognition service

is CPU intensive, the online text translator service is I/O

intensive. Each application service consists of 3 different

service functions and a total of 3000 service requests is

generated for the simulation (i.e., 1800 face recognition

services and 1200 online text translator services). We

referred to [26] to decide the parameters used for latency

model such as service packet size and latency between

network switches. The detailed specifications of applica-

tion services and service functions are summarized in

Tables 1 and 2.

In order to emulate the traffic ingested into each appli-

cation service, we used a real traffic log from PlanetLab

[27]. This real dataset has trace logs of CPU utilization for

two months (i.e., from March to April in 2011) from more

than a thousand VMs in 500 distributed physical servers

around the world. In this dataset, the CPU utilization of

each VM in 1 day was measured in every 5 min and

recorded into a separate file. Therefore, each file includes

the 288 lines of a VM’s CPU utilization data for 24 h. As a

result, the same number of unique files as the number of

VMs running on a certain day is generated in the same day.

As we discussed in Sect. 4, ESFEC places services with

their minimum CPU utilization rather than their maximum

utilization. To simulate this environment with different

traffic characteristics, we collected the PlanetLab’s trace

log files on April 3, 2011 that include the CPU utilization

data of 1463 VMs (i.e., 1463 files). By analyzing those

files, we classified them as low, medium and high traffic

types. Figure 5 shows the CPU utilization of three VMs

randomly chosen and averaged from each traffic type.

Also, to determine the minimum and maximum utilization

of each application service, we chose 20 files each from 3

traffic types and used the averages of their minimum and

maximum CPU utilization for the simulation. The detailed

CPU utilization requirements of each application service

are shown in Table 3. We assume that each application

service has the same CPU utilization per traffic type in the

simulation.

For comparison, we also implemented one heuristic

service scheduling algorithm called EC-MAX, which is

used in the traditional edge cloud environment. EC-MAX

places service functions in a service path with their maxi-

mum traffic requirements on the edge servers and recon-

figures the service path without considering migration

overhead. In contrast to ESFEC, this algorithm relocates

services to cloud servers if sufficient computing capacity

cannot be provided in the edge servers. In what follows, we

compare the performance of ESFEC and its related algo-

rithms with that of EC-MAX in terms of energy con-

sumption and QoS violation rate.

Table 1 Specification of

application services [25]
Type Functions Latency (s) Traffic

Face Recognition (FR) SuperHub ! TPLink ! FR API 2.0 CPU intensive

Text Translator (TT) Livebox ! Netgear ! TT API 1.5 I/O intensive

Table 2 Specification of service functions [25]

Function type # of CPU cores VM size

SuperHub 2 512 MB

Livebox 1 256 MB

TPLink 2 128 MB

Netgear 1 384 MB

Face Recognition API 1 1 GB

Text Translator API 1 1 GB

Fig. 5 CPU utilization distribution per traffic type

Cluster Computing

123

5.2 Convergence analysis of ESFEC-RL

In this section, we analyze ESFEC-RL and check whether

this algorithm converges to the optimal solution. Figure 6

shows the convergence patterns of ESFEC-RL for 60

iterations over the three different traffic types. As shown in

Fig. 6, ESFEC-RL starts to converge around the 50th

iteration regardless of traffic type. This indicates that there

is no significant reduction in energy consumption after that

point.

On the other hand, in a low traffic type shown in Fig. 6a,

we can observe that the learning curve is quite smooth up

to the 20th iteration. However, when the traffic is getting

heavier (i.e., medium traffic), the learning curve starts to

fluctuate during that period. In particular, in the high traffic

type shown in Fig. 6c, ESFEC-RL sharply fluctuates

without converging to its optimal solution and finally starts

to converge around from the 25th iteration.

This can be explained by the following observations.

When the traffic is low, the traffic volume of most desti-

nation hosts in the candidate host list is also likely to be

very low. Thus, after a migration is finished, the difference

of energy consumption by a random decision and an

optimal decision is minimal, which creates a smooth

learning curve. Meanwhile, when the traffic volume gets

larger, the difference of resulting energy consumption by

both decisions widen because the probability of having

much traffic on destination hosts is increased due to the

increased number of VM migrations and the agent’s ran-

dom decision. It should be noted that as ESFEC-RL has

more iterations, it finally converges to the optimal solution

around at the 50th iteration.

5.3 Comparison of energy consumption

Figure 7 shows the energy consumption of heuristic-based

ESFEC algorithms and EC-MAX normalized with respect

to that of ESFEC-RL using three different traffic types.

Overall, ESFEC-RL shows the lowest energy consumption,

while EC-MAX has the highest energy consumption over

all traffic types. Since ESFEC places services based on

their minimum CPU utilization, the number of co-located

VMs in a single edge server increases. This leads to the

reduction of energy consumption.

On the other hand, as the traffic gets heavier, the per-

formance gap in energy consumption is reduced. For

example, in the low traffic condition, EC-MAX consumed

28%, 10% and 12% more energy than ESFEC-RL, ESFEC-

EF and ESFEC-MF, respectively. Whereas, the gap is

slightly reduced to 16%, 10% and 8% in the high traffic

condition.

This is because low traffic causes less service migration

and the migration energy does not make a significant

impact on the overall energy consumption. However, when

the traffic goes higher, frequent service migrations among

overloaded edge servers result in high migration energy

along the service path. It is worthy to note that the

reconfiguration algorithms in ESFEC reduce migration

overhead by choosing a migrating VM with the smallest

size. Moreover, choosing a host with the largest leftover

capacity also reduces the probability of the migrating VM

to migrate again in the next monitoring interval. Although

the number of migrations in ESFEC is expected to be more

than that of EC-MAX, the mechanisms mentioned above

can reduce the energy consumption even in the high traffic

condition.

Table 3 CPU utilization requirements

Application Traffic Minimum (%) Maximum (%)

Face Recognition Low 30 48

Medium 36 54

High 40 60

Text Translator Low 15 32

Medium 20 38

High 24 44

Fig. 6 Convergence patterns in ESFEC-RL

Cluster Computing

123

5.4 Comparison of QoS violation rate

Figure 8 compares the QoS violation rate of ESFEC-RL

with those of heuristic-based ESFEC algorithms and EC-

MAX. As shown in Fig. 8, all algorithms developed in

ESFEC have lower violation rates than that of EC-MAX.

While the QoS violation rates of three ESFEC algorithms

are almost consistent regardless of traffic type, the QoS

violation rate of EC-MAX keeps increasing as we increase

the traffic volume. For example, in the high traffic condi-

tion, EC-MAX shows a violation rate that is almost 66%

higher than ESFEC-RL.

Note that all ESFEC algorithms continuously find

nearby edge servers when they fail to place services on one

edge server. In contrast, EC-MAX starts to place services

on cloud servers if sufficient capacity is not available in the

edge server. This causes a high QoS violation rate because

the service traffic traverses through multiple network

switches, which results in high network latency.

5.5 Migration overhead analysis

We showed in Sect. 5.3 that all ESFEC algorithms con-

sume less energy than EC-MAX even when the number of

service migrations increases in a high traffic condition. To

understand why this happens, this section analyzes the

number of service migrations in different traffic conditions

and its relationship with migration energy consumption.

Figures 9 and 10 show the number of service migra-

tions and migration energy consumption of ESFEC-EF,

ESFEC-MF and EC-MAX normalized with respect to those

of ESFEC-RL, respectively. As shown in Fig. 9, the

number of migrations in EC-MAX is less than those of

ESFEC algorithms in all traffic types. Strangely, the

migration energy in EC-MAX is relatively larger than

those of ESFEC algorithms, as shown in Fig. 10. For

example, ESFEC-RL generates 8% and 12% more migra-

tions than EC-MAX in medium and high traffic conditions,

respectively. However, EC-MAX consumes 33% more

energy than ESFEC-RL in the medium traffic type, and its

migration energy consumption increases up to 50% more

than ESFEC-RL in a high traffic type.

The main reason for this is as follows. Note that EC-

MAX does not take into account migration overhead when

service reconfiguration is conducted, which incurs more

migration energy. However, the service reconfiguration

algorithms in ESFEC reconstruct a service path while

minimizing migration overhead. In fact, we can observe in

Fig. 10 that the migration energy in all ESFEC algorithms

is smaller than that of EC-MAX in the high traffic condi-

tion in spite of the increased number of migrations.

Another reason is that ESFEC reduces the number of net-

work switches along the service path because it migrates

VMs from an overloaded edge server to nearby edge ser-

vers connected by edge switches. In contrast, EC-MAX

migrates VMs to cloud servers if not enough capacity is

provided in an edge server, which increases the number of

Fig. 7 Comparison of energy consumption per service

Fig. 8 Comparison of QoS violation rate per service Fig. 9 Number of migrations

Cluster Computing

123

network switches (i.e., edge/aggregation/core switches)

along the service path.

It is also shown in Figs. 9 and 10 that ESFEC-EF incurs

slightly more service migrations and consumes more

migration energy than ESFEC-MF, especially in medium

to high traffic conditions. This is because ESFEC-EF

focuses more on minimizing the energy consumption along

the service path rather than minimizing the number of

migrations when a migration is initiated. However, the

energy consumption and QoS violation rate of both algo-

rithms are very similar to each other in all traffic condi-

tions, as shown in Figs. 7 and 8. This indicates that both

algorithms have similar energy efficiency regardless of

migration overhead.

6 Conclusion

In this paper, we have proposed an energy efficient service

scheduling algorithm in a FEC environment called ESFEC,

which consists of a service placement algorithm and three

service reconfiguration algorithms: ESFEC-RL, ESFEC-

EF, and ESFEC-MF.

The main idea behind the ESFEC’s design is to place

services on edge servers in nearby edge domains and use

the minimum traffic requirements instead of their maxi-

mum requirements. This approach reduces the QoS viola-

tion rate of a given service and increases the level of VM

consolidation in a singe edge server, which reduces energy

consumption along the service path. Moreover, the service

reconfiguration algorithms in ESFEC are designed so that

they reduce migration overhead by selecting a VM with the

smallest size as a migrating VM and a host with the largest

leftover CPU utilization as a destination host for migration.

Through simulations, we have shown that the proposed

algorithms are effective for minimizing energy consump-

tion as well as QoS violation rate. The simulation results

show that ESFEC improves energy efficiency by up to 28%

and reduces the service violation rate by up to 66% more

than the existing service scheduling mechanism used in

edge clouds.

Acknowledgements This research was supported by Next-Generation

Information Computing Development Program through National

Research Foundation of Korea (NRF) funded by the Ministry of

Science, ICT 2017M3C4A7080245.

References

1. Jeong, Y., Maria, K.E., Park, S.: An energy-efficient service

scheduling algorithm in federated edge cloud. In: 2020 IEEE

International Conference on Autonomic Computing and Self-

Organizing Systems Companion (ACSOS-C), pp. 48–53 (2020)

2. Cao, X., Tang, G., Guo, D., Li, Y., Zhang, W.: Edge Federation:

Towards an Integrated Service Provisioning Model. arXiv pre-

print (2019). arXiv:1902.09055

3. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing:

vision and challenges. IEEE Internet Things J. 3(5), 637–646
(2016)

4. Ganesh, L., Weatherspoon, H., Marian, T., Birman, K.: Integrated

approach to data center power management. IEEE Trans. Com-

put. 62(6), 1086–1096 (2013)

5. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:

Heterogeneity and dynamicity of clouds at scale: Google trace

analysis. In: Proceedings of the Third ACM Symposium on Cloud

Computing, p. 7 (2012)

6. Eramo, V., Ammar, M., Lavacca, F.G.: Migration energy aware

reconfigurations of virtual network function instances in NFV

architectures. IEEE Access 5, 4927–4938 (2017)

7. Kim, S., Park, S., Youngjae, K., Kim, S., Lee, K.: VNF-EQ:

dynamic placement of virtual network functions for energy effi-

ciency and QoS guarantee in NFV. Clust. Comput. 20, 09 (2017)

8. Abdessamia, F., Tian, Y.-C.: Energy-efficiency virtual machine

placement based on binary gravitational search algorithm. Clust.

Comput. 23, 09 (2020)

9. Tarahomi, M., Izadi, M., Ghobaei-Arani, M.: An efficient power-

aware VM allocation mechanism in cloud data centers: a micro

genetic-based approach. Clust. Comput. 24, 06 (2021)

10. Sun, G., Li, Y., Yu, H., Vasilakos, A.V., Du, X., Guizani, M.:

Energy-efficient and traffic-aware service function chaining

orchestration in multi-domain networks. Future Gener. Comput.

Syst. 91, 347–360 (2019)

11. Shang, X., Liu, Z., Yang, Y.: Network congestion-aware online

service function chain placement and load balancing. In: Pro-

ceedings of the 48th International Conference on Parallel Pro-

cessing, ICPP 2019. Association for Computing Machinery, New

York (2019)

12. Ascigil, O., Phan, T.K., Tasiopoulos, A.G., Sourlas, V., Psaras, I.,

Pavlou, G.: On uncoordinated service placement in edge-clouds.

In: 2017 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), pp. 41–48 (2017)

13. Son, J., Buyya, R.: Latency-aware virtualized network function

provisioning for distributed edge clouds. J. Syst. Softw. 152,
24–31 (2019)

14. Keshavarznejad, M., Rezvani, M., Adabi, S.: Delay-aware opti-

mization of energy consumption for task offloading in fog envi-

ronments using metaheuristic algorithms. Clust. Comput. (2021).

https://doi.org/10.1007/s10586-020-03230-y

15. Duggan, M., Duggan, J., Howley, E., Barrett, E.: A network

aware approach for the scheduling of virtual machine migration

during peak loads. Clust. Comput. 20, 1–12 (2017)

Fig. 10 Migration energy

Cluster Computing

123

http://arxiv.org/abs/1902.09055
https://doi.org/10.1007/s10586-020-03230-y

16. Duggan, M., Flesk, K., Duggan, J., Howley, E., Barrett, E.: A

reinforcement learning approach for dynamic selection of virtual

machines in cloud data centres. In: The Sixth International

Conference on Innovative Computing Technology (2016)

17. Peng, Z., Lin, J., Cui, D., Li, Q., He, J.: A multi-objective trade-

off framework for cloud resource scheduling based on the deep

Q-network algorithm. Clust. Comput. 23, 12 (2020)

18. Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G.:

Task offloading and resource allocation for mobile edge com-

puting by deep reinforcement learning based on SARSA. IEEE

Access 8, 54074–54084 (2020)

19. Chen, Q., Grosso, P., van der Veldt, K., de Laat, C., Hofman, R.,

Bal, H.: Profiling energy consumption of VMs for green cloud

computing. In: 2011 IEEE Ninth International Conference on

Dependable, Autonomic and Secure Computing, pp. 768–775

(2011)

20. Wang, X., Wang, X., Zheng, K., Yao, Y., Cao, Q.: Correlation-

aware traffic consolidation for power optimization of data center

networks. IEEE Trans. Parallel Distrib. Syst. 27(4), 992–1006
(2016)

21. Liu, H., Xu, C.-Z., Jin, H., Liao, X.: Performance and energy

modeling for live migration of virtual machines. Clust. Comput.

16, 171–182 (2011)

22. Wunder, M., Littman, M., Babes, M.: Classes of multiagent Q-

learning dynamics with �-greedy exploration. In: 27th Interna-

tional Conference on Machine Learning (2010)

23. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8,
279–292 (1992)

24. Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya,

R.: CloudSimSDN: modeling and simulation of software-defined

cloud data centers. In: 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pp. 475–484

(2015)

25. Cziva, R., Pezaros, D.P.: Container network functions: bringing

NFV to the network edge. IEEE Commun. Mag. 55(6), 24–31
(2017)

26. Antoniou, I., Ivanov, V., Ivanov, V., Zrelov, P.: On the log-

normal distribution of network traffic. Physica D 167, 72–85

(2002)

27. Beloglazov, A., Buyya, R.: Optimal online deterministic algo-

rithms and adaptive heuristics for energy and performance effi-

cient dynamic consolidation of virtual machines in cloud data

centers. Concurr. Comput. Pract. Exp. 24, 1397–1420 (2012)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Yeonwoo Jeong Yeonwoo Jeong

is currently pursuing Ph.D.

Degree in Computer Science

and Engineering from Sogang

University, Seoul, Republic of

Korea. He received his B.S.

Degree in Computer Software

from Kwangwoon University

and M.S. Degree in Computer

Science and Engineering in

Sogang University. His research

interests include cloud comput-

ing and resource management.

Esrat Maria Esrat Maria is a

Master Degree Student in

Sogang University, Seoul,

Republic of Korea. She received

her B.S. Degree in Computer

Science from Ahsanullah

University of Science and

Technology. Her research

interests include cloud comput-

ing and resource management.

Sungyong Park Sungyong Park

is a Professor in the Department

of Computer Science and Engi-

neering at Sogang University,

Seoul, Korea. He received his

B.S. Degree in Computer Sci-

ence from Sogang University,

and both the M.S. and Ph.D.

Degrees in Computer Science

from Syracuse University. From

1987 to 1992, he worked for LG

Electronics, Korea, as a

Research Engineer. From 1998

to 1999, he was a Research

Scientist at Telcordia Tech-

nologies (formerly Bellcore), where he developed network manage-

ment software for optical switches. His research interests include

cloud computing and systems, virtualization technologies, high per-

formance I/O and storage systems, and embedded system software.

Cluster Computing

123

	Towards energy-efficient service scheduling in federated edge clouds
	Abstract
	Introduction
	Related work
	System models and problem definition
	System model
	Problem definition
	Energy model
	Latency model

	ESFEC: energy-efficient service scheduling in federated edge cloud
	System overview
	Service placement
	 RL-based service reconfiguration
	State space
	Action space
	Reward function
	Learning agent

	Heuristic-based service reconfiguration

	Evaluation
	Experimental environment
	Topology
	Energy parameters
	Workloads and comparison target

	Convergence analysis of ESFEC-RL
	Comparison of energy consumption
	Comparison of QoS violation rate
	Migration overhead analysis

	Conclusion
	Acknowledgements
	References

